Tuesday, 29 July 2014
La géométrie admet de nombreuses acceptions selon les auteurs. Dans un sens strict, la géométrie est
La géométrie d'incidence et la géométrie synthétique (ou géométrie pure), qui utilisent une approche axiomatique ayant généralement comme données premières les points, les droites, les plans, ainsi que les relations qui les gouvernent et les grandeurs qui leur sont associées.
La géométrie analytique, qui utilise les coordonnées et qui associe à chaque point des triplets (ou une suite de longueur donnée) d'éléments d'un corps.
L'algèbre linéaire, qui généralise la géométrie analytique en remplaçant l'utilisation des coordonnées par celle des espaces vectoriels abstraits.
La géométrie des groupes, qui étudie les actions de groupe et leurs invariants. C'est là le programme d'Erlangen de Felix Klein. On s'intéresse particulièrement aux groupes (abstraits, algébriques ou de Lie) classiques, c'est-à-dire aux groupes liés aux groupes linéaires, orthogonaux, unitaires ou symplectiques, et a leurs espaces homogènes classiques (espaces symétriques, variétés de drapeaux, par exemple). La théorie des invariants est intimement liée à cet aspect de la géométrie : elle permet d'associer à des configurations des quantités (birapports, distances, angles, etc.) qui permettent de classer les orbites. On peut aussi étendre cette approche à la géométrie des groupes exceptionnels (algébriques ou de Lie).
La théorie des immeubles (en) de Tits, qui est liée à la géométrie des groupes classiques et exceptionnels (algébriques ou non), et qui étudie des structures combinatoires liés aux diagrammes de Coxeter. Par exemple, l'ensemble de toutes les chaînes de sous-espaces vectoriels d'un espace vectoriel de dimension finie sur un corps est un immeuble, et l'ensemble de toutes les chaînes de sous-espaces projectifs d'un espace projectif P de dimension finie sur corps commutatif qui sont inclus dans une même quadrique projective de P est un immeuble.
Il est remarquable que l'algèbre linéaire (espaces vectoriels, formes quadratiques, formes bilinéaires alternées, formes hermitiennes et antihermitienne, etc.) permette de construire des modèles explicites de la plupart des structures rencontrées dans ces géométries. Cela confère donc à la géométrie classique une certaine unité.
Autres types de géométries[modifier | modifier le code]
Il y a des branches des mathématiques qui sont issues de l'étude des figures des espaces euclidiens, mais qui se sont constituées en branches autonomes des mathématiques et qui étudient des espaces qui ne sont pas nécessairement plongés dans des espaces euclidiens :
la topologie ;
la géométrie différentielle, qui utilise l'analyse, la topologie et l'algèbre linéaire, et qui étudie des espaces qui, localement, sont des espaces euclidiens, et sur lesquels on peut faire du calcul différentiel et du calcul intégral. La géométrie différentielle englobe la géométrie riemannienne et la géométrie symplectique;
la géométrie algébrique, qui utilise l'algèbre abstraite et la topologie et qui étudie des espaces qui, localement, sont des ensembles de points définis par des équations algébriques, tels les sous-espace affines, les coniques et les quadriques ;
la géométrie non commutative.
Les différents espaces de la géométrie classique peuvent être étudiés par la topologie, la géométrie différentielle et la géométrie algébrique.
Conception de la géométrie[modifier | modifier le code]
La géométrie admet de nombreuses acceptions selon les auteurs. Dans un sens strict, la géométrie est « l'étude des formes et des grandeurs de figures »1. Cette définition est conforme à l'émergence de la géométrie en tant que science sous la civilisation grecque durant l'époque classique. Selon un rapport de Jean-Pierre Kahane2, cette définition coïncide avec l'idée que se font les gens de la géométrie comme matière enseignée : c'est « le lieu où on apprend à appréhender l'espace ».
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment